Number fluctuation and the fundamental theorem of arithmetic.
نویسندگان
چکیده
We consider N bosons occupying a discrete set of single-particle quantum states in an isolated trap. Usually, for a given excitation energy, there are many combinations of exciting different number of particles from the ground state, resulting in a fluctuation of the ground state population. As a counterexample, we take the quantum spectrum to be logarithms of the prime number sequence, and using the fundamental theorem of arithmetic, find that the ground state fluctuation vanishes exactly for all excitations. The use of the canonical or grand canonical ensembles, on the other hand, gives a substantial number fluctuation for the ground state. This is an example of a system where canonical and grand canonical ensemble averagings are not valid because of the peculiar nature of the quantum spectrum.
منابع مشابه
Arithmetic Teichmuller Theory
By Grothedieck's Anabelian conjectures, Galois representations landing in outer automorphism group of the algebraic fundamental group which are associated to hyperbolic smooth curves defined over number fields encode all arithmetic information of these curves. The goal of this paper is to develope and arithmetic teichmuller theory, by which we mean, introducing arithmetic objects summarizing th...
متن کاملEfficient Reverse Converter for Three Modules Set {2^n-1,2^(n+1)-1,2^n} in Multi-Part RNS
Residue Number System is a numerical system which arithmetic operations are performed parallelly. One of the main factors that affects the system’s performance is the complexity of reverse converter. It should be noted that the complexity of this part should not affect the earned speed of parallelly performed arithmetic unit. Therefore in this paper a high speed converter for moduli set {2n-1, ...
متن کاملEfficient Reverse Converter for Three Modules Set {2^n-1,2^(n+1)-1,2^n} in Multi-Part RNS
Residue Number System is a numerical system which arithmetic operations are performed parallelly. One of the main factors that affects the system’s performance is the complexity of reverse converter. It should be noted that the complexity of this part should not affect the earned speed of parallelly performed arithmetic unit. Therefore in this paper a high speed converter for moduli set {2n-1, ...
متن کاملAn Overview of Mathematical Contributions of Ghiyath al-Din Jamshid Al-Kashi [Kashani]
In this paper, we study Ghiyath al-Din Jamshid al-Kashi's (1380-1429 A.D.) main mathematical achievements. We discuss his al-Risala al-muhitiyya ("The Treatise on the Circumference"), Risala al-watar wa'l-jaib ("The Treatise on the Chord and Sine"), and Miftah al-hisab ("The Key of Arithmetic"). In particular, we look at al-Kashi's fundamental theorem, his calcula...
متن کاملOn generalized fuzzy numbers
This paper first improves Chen and Hsieh’s definition of generalized fuzzy numbers, which makes it the generalization of definition of fuzzy numbers. Secondly, in terms of the generalized fuzzy numbers set, we introduce two different kinds of orders and arithmetic operations and metrics based on the λ-cutting sets or generalized λ-cutting sets, so that the generalized fuzzy numbers are integrat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 68 2 Pt 2 شماره
صفحات -
تاریخ انتشار 2003